
Project Report On

Design Automation for Sample Preparation using
Programmable Microfluidic Devices

Submitted in requirement for the course

B.Tech. Project (CSN-400B)
of Bachelor of Technology in Computer Science and Engineering

Submitted By

Sandeep Pal Gautam Choudhary Siraz Shaikh
15114063 15114027 15114065

sanpal1997@gmail.com gc.iitr@gmail.com sirazsk.97@gmail.com

Under the supervision of
Dr. Sudip Roy

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING
INDIAN INSTITUTE OF TECHNOLOGY, ROORKEE

ROORKEE- 247667 (INDIA)

April, 2019

Candidate’s Declaration

We declare that our work presented in this report with title “Design Automation for
Sample Preparation using Programmable Microfluidic Devices” towards the fulfill-
ment of the requirement for the award of the degree of Bachelor of Technology in
Computer Science and Engineering submitted in Department of Computer Science
And Engineering, Indian Institute of Technology, Roorkee is an authentic record of
our own work carried out during period from August 2018 to April 2019 under the
supervision of Prof. Sudip Roy, Assistant Professor, Dept. Of CSE, IIT Roorkee.
The content of this report, has not been submitted by us for the award for any other
degree of this or any other institute.

DATE: SIGNED:

PLACE: GAUTAM CHOUDHARY

(15114027)

DATE: SIGNED:

PLACE: SANDEEP PAL

(15114063)

DATE: SIGNED:

PLACE: SIRAZ SHAIKH

(15114065)

i

Certificate

This is to certify that the statement made by the candidate is correct to the best of my
knowledge and belief.

DATE: SIGNED:

PROF. SUDIP ROY

(ASSISTANT PROFESSOR)
DEPT. OF CSE, IIT ROORKEE

ii

Acknowledgement

First and foremost, we would like to express our sincere gratitude towards our guide Dr.
Sudip Roy, Assistant Professor, Department of Computer Science and Engineering,
IIT Roorkee for his ideal guidance throughout the entire period. We want to thank him
for the insightful discussions and constructive criticisms which certainly enhanced our
knowledge as well as improved our skills. His constant encouragement, support and
motivation were key to overcome all the difficult and struggling phases.

We would also like thank Department of Computer Science and Engineering, IIT
Roorkee for providing computing resources of CoDA Lab, and other resources for the
project work.

We also extend our gratitude to Debraj Kundu, for keeping us motivated and providing
us with valuable insights through various interesting discussions.

We humbly extend our sincere thanks to all concerned persons who co-operated with us
in this regard.

iii

Abstract

During last three decades various kinds of microfluidic laboratory-on-chips (LoCs)
have been experimentally demonstrated. Compared to such conventional application-
specific LoCs, which has less number of reconfigurable on-chip components (modules),
the new technology known as programmable microfluidic devices (PMD) can be used to
develop general-purpose LoCs with full reconfigurability. As per the working principle
of a PMD-based LoC, fluids can easily be loaded into and washed from a cell with
the help of fluid flows from inlet to outlet of the microfluidic chip, whereas cell-to-
cell transportation of discrete fluid segment(s) is not precisely possible. On a PMD-
based LoC, the simplest mixing module to realize is four-way mixer consisting of a
2 × 2 array of cells working as a ring-like mixer having four valves. For any bioassay
implementation on an LoC, sample preparation is an important step, which needs to
be automated for higher accuracy compared to manual intervention. In this paper, we
propose a design automation strategy to achieve the transport-free module binding of a
mixing tree (a 4-ary tree representing the sequence of mix-split steps) on a PMD-based
LoC for sample preparation using four-way mixers. Moreover, we provide a heuristic
to modify the mixing tree to reduce the time of completion for sample preparation.
Simulation results confirm that the proposed heuristic along with the module binding
method outperforms the module binding for the state-of-the-art mixing trees. There is a
significant reduction in bioassay completion time (by a factor of 2) in many cases while
decreasing the actuations of highly actuated valves. On an average, for ratio sum of
256, the bioassay completion time, area and valve used reduces by 21%, 23% and 28%,
respectively, with only 25% increase in actuation count on-average.

iv

Contents

1 Introduction 1
1.1 BioChips . 1

1.1.1 What is a BioChip? . 1
1.1.2 Types of BioChips . 1
1.1.3 Applications of BioChips . 3
1.1.4 Problems Identified in BioChips 4

1.2 Objectives . 5
1.3 Organization . 5

2 Literature Survey 6
2.1 Background on Programmable Microfluidic Devices 6

2.1.1 PMD: A Survey . 6
2.1.2 PMD: Applications . 7

2.2 Basic Preliminaries of Programmable Microfluidic Devices 7
2.2.1 PMD: Architecture . 7
2.2.2 PMD: Fluidic Transportation Constraint 9
2.2.3 Sample Preparation . 10

3 Proposed Methodology and Overview 12

4 Transport-Free Module Binding 13
4.1 Motivation . 13
4.2 Problem Formulation . 15
4.3 Proposed Approach . 15

4.3.1 Requirements . 15
4.3.2 Modelling . 15

v

4.4 Degree of Freedom (DoF) . 17
4.5 Left Factoring . 17
4.6 No Transport Mixing (NTM) . 18

4.6.1 Example . 18
4.6.2 Complexity Analysis . 22

5 Mixing Tree Customization 24
5.1 Motivation . 24
5.2 Problem Formulation . 25
5.3 Heuristic Distribution Algorithm (HDA) 26

5.3.1 Example . 29

6 Simulation Results 30
6.1 Environment Setup . 30
6.2 Results and Analysis . 30

6.2.1 Performance Evaluation Based on L 31
6.2.2 Performance Evaluation Based on k 31
6.2.3 Performance Evaluation for Some Testcases 32
6.2.4 Comparative Heatmaps for Valve Actuations of a Testcase . . . 33

7 GUI Based Simulation Tool 34
7.1 Implementation Details . 35
7.2 Example . 36

7.2.1 Load Operation . 36
7.2.2 Wash Operation . 38
7.2.3 Mix Operation . 39

8 Conclusions and Future Work 41

Dissemination from the Dissertation 42

Bibliography 43

vi

List of Figures

1.1 Two broad classes of biochips on basis of fluid driving force 2
1.2 Structures of different biochips : a) Continuous Microfluidic biochip, b)

Prorgammable Microfluidic Device, c) Digital Microfluidic biochip and
d)Micro-Electrode-Dot-Array biochip 3

2.1 A PMD device. a) Grid structure of PMD with fluid filled in red. b)
Structure of a unit cell in grid surrounded by 4 valves. 8

2.2 Schematic view of a PMD-based LoC and its working. 8
2.3 Fluid transport constraint for a PMD-based LoC. (a) Requirement of

fluid transportation from source cells to target cells, and (b) fluid seg-
mentation and bubble formation while transporting the fluid using an-
other immiscible fluid. 9

2.4 For target ratio r1 : r2 : r3 : r4 : r5 ≡ 27 : 25 : 57 : 69 : 78,
(a) mixing tree obtained by genMixing [1] and (b) its module binding
using NTM in order M2,M4,M5 → M7 → M8 → M6 → M3 → M1

with sequent washing, and (c) mixing graph obtained by Storage-Aware
FloSPA [2] and (d) the problem raised during its module binding in
order M5,M6 →M4. 10

3.1 Proposed methodology for module binding in PMD-based LoC. 12

4.1 (a) A mixing tree for target ratio r1 : r2 : . . . : r64 ≡ 1 : 1 : . . . : 1

obtained by genMixing [1] and module binding at time cycle (b) t = 1,
(c) t = 2, (d) t = 3, (e) t = 4, (f) t = 5 and (g) t = 6. 14

4.2 Illustration of proposed modelling for (a) PMD based LoC as a (b) 2-D
grid graph. 16

vii

4.3 Degree of Freedom (DoF) in case of (a)DoF = 4, (b)DoF = 2 and (c)
DoF = 1, where rounded squares represent parent mixer node (blue)
and child mixer nodes (white) in a tree. 17

4.4 Left Factoring a mixing tree (left) shifts the higher edge weight carrying
nodes to the left. The resultant is a left factored tree on right. 18

4.5 Module binding using NTM for left factored tree (as in Figure 4.4 at
time cycle (a) t = 1, (b) t = 2, (c) t = 3 and (d) t = 4. 20

4.6 On chip placement, using NTM, of the farthest placed mixing nodes
(rounded square boxes) present at varying depths d = 0, 1, 2, ... of a
general mixing tree. 23

5.1 For a target ratio 26 : 63 : 47 : 43 : 7 : 70 of six reactant fluids
r1, r2, r3, r4, r5, r6, (a) a mixing tree obtained by genMixing [1] and (b)
the Gantt chart showing its schedule, and (c) a modified mixing tree and
(d) Gantt chart showing its schedule. (e) Four quadrants used for mixer
module binding on an 8× 8 PMD chip. 25

5.2 Substitution of a reagent R1 with a dummy mix node m0 and its 4 chil-
dren R1 results an equivalent of a mixing tree. 26

5.3 Parent children re-assignment step of depth i with depth i+ 1. 29

6.1 Distribution of (a) Avg. Completion Time Tavg, (b) Avg. Cells Cavg

used, (c) Avg. #Valves Vavg actuated and (d) Avg. #Valves Aavg actu-
ations for ratio sum, L = 64 (d = 3) and over k = 3, 4, 5, · · · , 12 for
NTM and HDA + NTM. 32

6.2 Heatmap for number of actuations of valves on the 8× 8 PMD chip for
(a) the mixing tree shown in Fig. 5.1(a) and (b) the mixing tree obtained
by HDA shown in Fig. 5.1(c), after module binding performed by NTM
algorithm. 33

7.1 A snapshot of the tool at the beginning of execution 34
7.2 Flow for simulating the placement . 35
7.3 Load Operation in GUI tool . 36
7.4 Wash Operation in GUI tool . 38
7.5 Mix Operation in GUI tool . 40

viii

List of Tables

6.1 Comparison between NTM and HDA + NTM on the basis of Avg. Com-
pletion Time Tavg, Avg. #Cells Cavg, Avg. #Valves Vavg and Avg.
#Actuations Aavg for L = 64, 256, 1024. 31

6.2 Comparison between NTM and HDA + NTM on the basis of Completion
Time T, #Cells C, #Valves V and #Actuations A for six different ratios. 33

ix

List of Abbreviations

CMF Continuous Microfluidic Device

DAG Directed Acyclic Graph

DMF Digital Microfluidic Device

DoF Degree of Freedom

FPVA Fully Programmable Valve Array

GUI Graphical User Interface

HDA Heuristic Distribution Algorithm

ILP Integer Linear Programming

LoC Lab On a Chip

MEDA Micro Electrode Dot Array

NTM No Transport Mixing

PMD Programmable Microfluidic Device

x

List of Symbols

Symbol Description

A Actuation Count

C Cell Count

T Bio assay completion time

V Valve Count

T Mixing Tree

N Set of Nodes

E Set of Edges

G Grid Graph

A Assignment Set

L Ratio Sum

Mi Mix Node in G

ri Reagent Node in G

Cx,y Cell situated at (x,y)

Mx,y Mixer Module situated at (x,y)

LC Set of Load cells

MC Set of Mix cells

WC Set of Wash cells

xi

Chapter 1

Introduction

1.1 BioChips

1.1.1 What is a BioChip?

Microfluidic biochips are technology for manipulating nano to femto-litre volume of
biochemical fluids on a chip area of few centimeter squares. Biochips allow laboratory
procedures(bioprotocols) to be applied on samples and reagents with minimal quantities
as compared to traditional procedures, hence the name Lab-on-a-Chip. Biochips ensure
less likelihood of error due to minimal human intervention. Some of the laboratory
procedures have been successfully demonstrated on microfluidic biochips by different
research groups. [3]

1.1.2 Types of BioChips

Based on technological advances done so far, biochips can be classified in two classes,
continuous-flow based microfluidic (CMF) biochips and digital microfluidic (DMF)
biochips, refer Figure 1.1,1.2.
Digital microfluidic (DMF) chips exploit the electrowetting-on-dielectric (EWOD) to
perform droplet dispense, transport, mixing and splitting on a two-dimensional array of
electrodes.
Whereas, a continuous-flow based microfluidic (CMF) biochip contains microchannels,
microvalves and micropumps for manipulation of different biochemical fluids on it in
order to implement any desired bioprotocol. Among all currently available technolog-

1

ical advances, DMF and CMF have become very popular due to the fact that they are
suitable for design automation techniques.

 Continuous flow based Microfluidics (CMF)

Contain microchannels, microvalves and micro
pumps to manipulate fluids.
A module enables mixing in specific proportions.

 Programmable Microfluidic Devices (PMD)

Network of intersecting channels controlled by
independently addressable valves.
Actuation of valve sequences create route for fluids
to flow.

 Digital Microfluidics (DMF)

Grid of dielectric electrodes to route the droplets
Imbalance of tension creates a gradient for droplet
to drift.

 MicroElectrodeDotArray (MEDA)

Microelectrodes dynamically grouped to form a
microcomponent
It can perform different microfluidic operations on
the chip.

Figure 1.1: Two broad classes of biochips on basis of fluid driving force

Digital microfluidic biochips enable movement of fluid through a gradient in poten-
tial energy of cells. The droplet on the surface of the electrode shifts toward adjacent
electrode when this electrode is actuated.

Continuous Flow based biochips enable movement of fluid through a pressure dif-
ference among chambers. As compared to digital microfluidics where droplet based op-
erations are performed, in continuous microfluidics, a continuous flow of fluid is used.
A buffer solution is used to push the fluid across chambers.

2

Figure 1.2: Structures of different biochips : a) Continuous Microfluidic biochip,
b) Prorgammable Microfluidic Device, c) Digital Microfluidic biochip and d)Micro-
Electrode-Dot-Array biochip

1.1.3 Applications of BioChips

The increasing demand of safety-critical health-care applications makes people think
about the need for automation of the expensive biochemical laboratory protocols in
small-sized, hand-held and low-cost devices.

In contrast to macroscopic bio-systems, microfluidic biochips provide precise flu-
idic operations, consume less reactant fluids and accelerate the biochemical processes
by parallelising certain steps of a bioprotocol. Thus the primary motivation for the de-
sign and synthesis of various microfluidc biochips is to integrate complex biochemical
laboratory tasks in an efficient manner [4, 5]. To date several customized microfluidic
biochips have been designed for automated drug discovery [6], prenatal testing [7], HIV
and syphilis testing [8], DNA analysis [9, 10], cancer and stem cell research [11], envi-
ronmental monitoring and biological weapons detection.

3

1.1.4 Problems Identified in BioChips

Biochips, along with its above mentioned advantages, also have some design and au-
tomation issues associated. Starting from the fabrication to on-chip synthesis, the fol-
lowing problems have been identified that are common to all kinds of biochips:

1. Fabrication: The fabrication in flow based devices has evolved from mLSI (mi-
crofluidic Large Scale Integration) to mVLSI (microfluidic VeriLarge Scale Inte-
gration) [12] where in the density of control valves has increased by a factor of
100. In the digital microfluidics, the technology has advanced from DMF (Digital
Microfluidic Devices) to MEDA (Micro Electrode Dot Array) [13, 14] .

2. High Level Synthesis (Scheduling): Scheduling determines when a micro op-
eration of the bioassay starts and end execution on the microfluidic chip, while
sticking to the precedence constraints (from the Directed Acyclic Graph repre-
senting the bioassay) and resource constraints on the microfluidic device. It is
an NP-complete problem and is not possible to guarantee legal schedules in all
instances [15].

3. Architectural Level Synthesis (Placement, Routing):

(a) Placement: This determines the precise locations on the microfluidic chip
where the micro operations of bioassay are to be performed. The placer must
ensure appropriate spacing between operations to prevent cross-contamination.
This is also an NP-complete problem [16, 17].

(b) Routing: This determines the fluid transportation paths to be routed from (i)
input reservoirs on the microfluidic device to the placed modules (ii) from
one placed module to another and (iii) from a placed module to an output or
waste reservoir. The router must ensure appropriate spacing between flows
of other ongoing operations, with the objective of minimizing total trans-
portation time [18].

4. Pin Mapping: The number of independent input pins used to control the elec-
trodes in digital microfluidic “biochips” is an important cost-driver that needs to
be minimized. Pin-constrained biochips reduce the wiring complexity, thereby
lowering the cost [19].

4

5. Security and Attacks: Potential vulnerabilities in microfluidic biochip give rise
to security concerns with serious consequences for laboratory analysis and health-
care. Attacks may maliciously alter the intermediate concentration of some sam-
ples leading to alteration of bioassay final results. Some piracy attacks related to
Digital Microfluidic Devices are also prevelant [20].

1.2 Objectives

The bioprotocols are represented as DAG with nodes representing the operations and
edges representing the sequence. In order to execute these bioprotocols on PMD based
biochips, we need to determine schedule and placement of reagents. We propose a
placement algorithm to complete a bioassay on PMD based chip. Along with the algo-
rithm, we introduce a heuristic that improves upon the algorithm to minimize the time
and space for completion of the bioassay.

1.3 Organization

Having introduced biochips, their different types and their applications in Chapter 1.
Chapter 2 discusses about the literature survey and prior works done in this field.
Chapter 3 contains the proposed methodology and overview of our approach. Chap-
ter 4 discusses about the details of proposed algorithm for module binding. Chapter 5
discusses the proposed heuristic for accelerating our algorithm. Chapter 6 demon-
strates the results and analyses the performance of the proposed algorithm. Chapter 7
illustrates the GUI tool built for simulating the biochip. Chapter 8 lays out the con-
cluding remarks and extensions to our work.

5

Chapter 2

Literature Survey

2.1 Background on Programmable Microfluidic Devices

2.1.1 PMD: A Survey

Programmable Microfluidic Device (PMD) or Fully-Programmable Valve Array (FPVA)
is a continuous flow-based microfluidic system, which consists of a network of mi-
crochannels controlled by an array of independently addressable microvalves [21]. FPVA-
based LoC provides a generic platform, where we can perform fluidic operations such
as mixing, dilution, and storage in a re-configurable fashion to implement different bio-
chemical assays and hence, it serves as a general purpose microfluidic biochip. Fidalgo
et al. [21] demonstrated bioprotocols like surface immunoassays, cell culture and active
mixing on the FPVA biochip.

In literature, recently several research articles have been reported on the design au-
tomation and testing techniques for this similar kind of microfluidic biochips, referred as
PMD-based or FPVA-based LoCs. In [22], an ILP (integer linear programming) based
technique is proposed for a valve-centered architecture to make a reliable microfluidic
system. A fault-tolerant and efficient multi-channel control logic minimization method
is presented in [23] for flow-based microfluidic biochip, which can be efficiently imple-
mented for PMD as well. This algorithm empowers PMD with faster parallel on-chip
processes. A congestion avoiding routing algorithm for PMD is proposed in [24]. In
[25] a more practical constraint, a pump aware flow routing algorithm is presented for
PMD. An ILP based testing method for PMD is proposed in [26]. In [27] a relatively

6

time efficient spanning-tree based fault testing for PMD chip is reported. For a collision
free routing an exact approach is presented in [28] where a valve sequence is generated
as an output. A new dilution algorithm and its mapping for PMD is reported in [29].
Sample preparation is a very common step in many biochemical operations and can be
achieved via sequence of mixing steps.

2.1.2 PMD: Applications

The reconfigurable architecture of Programmable Microfluidic Devices (PMD) has var-
ious potential use cases as shown in [30] and listed below:

1. Microfluidic Display: The device can be used for automated node addressing and
compound loading. Simple programs have been created to generate dye patterns
resembling letters. For creating each pattern, the program determines whether the
node needs to be “re-written“ into a new state: red or white.

2. Surface Immunoassays: Immunoassays constitute a fundamental tool in biolog-
ical research, and their miniaturization has received significant attention. In their
first experiment, they have used sequential channel routing across the network to
create a surface pattern of a fluorescently labeled anti-GST (A-GST) antibody.
In their second experiment, they create pattern using two antibodies, the same
fluorescently-labeled anti-GST and a non-labeled anti-GFP (A-GFP) antibody.

3. Cell Culture: Cell culture is another appealing application of microfluidics. The
match between the dimensions of microfluidic channels and a wide variety of cell
types combined with high-throughput and compatibility with light microscopy
has made miniaturized cell culture a major focus in the field. Various specialized
devices have been developed to culture bacteria, yeast and mammalian cells.

2.2 Basic Preliminaries of Programmable Microfluidic
Devices

2.2.1 PMD: Architecture

PMD-based LoC is a two-layer microfluidic large-sacle integration (mLSI) based sym-
metric system. It consists of a network of intersecting flow-channels and control-

7

channels as shown in Figure 2.1. PMD-based LoCs are represented as a matrix/grid
of cells of size W × H , where W is the number of column and H is the number of
rows in that matrix. Each of these cells are surrounded by four elastomeric valves each
of which has a dedicated control address and can be programmed to generate a desired
flow path. In a W × H PMD-based LoC the total number cells is W ∗ H and that of
valves is 2W ∗H +W +H .

Figure 2.1: A PMD device. a) Grid structure of PMD with fluid filled in red. b) Structure
of a unit cell in grid surrounded by 4 valves.

In
-p

o
rt

O
u

t-
p

o
rt

: Cell

: Closed valve : Open valve

: Flow at Time Cycle 1 (Loading)

: Flow at Time Cycle 2 (Mixing)

: Don’t care valve

: Closed valve at Time Cycle 1

: Closed valve at Time Cycle 2

: Flow at Time Cycle 2 (Washing)

Figure 2.2: Schematic view of a PMD-based LoC and its working.

Loading, washing and mixing are the most atomic operations which are needed for
the realization of any bioprotocols on a PMD-based LoC. As shown in Figure 2.2 at
time cycle 1, both the loading and the mixing operations are preformed simultaneously
and at time cycle 2, the washing operation is performed in the desired cells. Since any
operation on a PMD-based LoC requires some specific actuation of valves the corre-
sponding valve actuation states are shown in Figure 2.2. To load or wash a desired set

8

of cells with a particular fluid a flow-path is required from the in-port to the out-port
which should pass through those desired cells such that it does not overlap with other
concurrent flow-paths or obstacles. For mixing operation firstly the desired mixing flu-
ids are loaded in a ring of cells then a set of consecutive valves of the corresponding cell
ring are repeatedly actuated and released in a high frequency. This results in a peristaltic
force and mix the fluids efficiently as in a rotary mixer [4].

2.2.2 PMD: Fluidic Transportation Constraint

As reported in literature, bubble formation and fluid segmentation in microchannels of
a flow-based microlfuidic device is a well-known problem while transporting a reac-
tant fluid from one part of the microchannel to another part with the help of another
immiscible fluid (silicone oil) [31]. Same is the problem with PMD-based LoCs for
transportation of a fluid from a set of source cells to some target cells as shown in Fig-
ure 2.3. In this work we consider a constraint which is not acknowledged before in the
literature. To move a section of fluid reside inside some cells firstly a feasible flow path
is determined and then using oil pressure from the in-port those cells are shifted to the
target cells. As the flow channel is an orthogonal space there are several right-angle
turns along the flow path. This results in a non-uniform oil pressure and as a conse-
quence there may be a breakage in the initial fluid section. In Figure 2.3(a) two filled
cells of the topmost row of the PMD chip is desired to shift in the the shaded cells of
the bottom most row. The corresponding flow path is shown with a bold arrow. In Fig-
ure 2.3(b) the result after the oil pressure is shown where we can visualize the breaking
of the moving fluid section. So here we discard the assumption of the feasible transport
of a continuous fluid section.

In
-p

o
rt

O
u

t-
p

o
rt

In
-p

o
rt

O
u

t-
p

o
rt

(a) (b)

Source Cells Loaded with Reactant Fluid

Target Cells

: Flow of Other Immiscible Fluid

Figure 2.3: Fluid transport constraint for a PMD-based LoC. (a) Requirement of fluid
transportation from source cells to target cells, and (b) fluid segmentation and bubble
formation while transporting the fluid using another immiscible fluid.

9

(b)
M7

M8

M4

M6

M2

(d)

M5

M4
M6

M5

M3

M1

M1

M2 M3

M4 M5

[r2,r3,r3,r3]

27:25:57:69:78[r4,r5]

[r4,r5,r5,r5]

1

1 1

1

[r1]

M6

1

[r1,r1]

M7 M8
[r1,r1,r1,r2][r3,r4,r5,r5]

1 1

M1

M2 M3

M5

[r1,r3,r3,r4]

27:25:57:69:78[r5]

[r1,r2,r3,r4]

1 1

M4

3

[r4]

M6
[r2,r3,r4,r5]

2

1

1
[r2,r2,r3,r3]

1

(c) (a)

Figure 2.4: For target ratio r1 : r2 : r3 : r4 : r5 ≡ 27 : 25 : 57 : 69 : 78, (a)
mixing tree obtained by genMixing [1] and (b) its module binding using NTM in order
M2,M4,M5 → M7 → M8 → M6 → M3 → M1 with sequent washing, and (c)
mixing graph obtained by Storage-Aware FloSPA [2] and (d) the problem raised during
its module binding in order M5,M6 →M4.

2.2.3 Sample Preparation

Sample preparation is defined as the generation of a certain volume of mixed fluid which
consists of particular ratio of k reagents (reactant fluids), r1, r2, r3, · · · , rk. The automa-
tion process of such a desired ratio varies for different microfluidic technologies. In
most of the cases the given ratio needs to be approximated into some other ratio set
maintaining a error threshold termed as error tolerance ε. In general a sample prepara-
tion is formulated as:
Input: Target ratio r1 : r2 : r3 : · · · : rk ≡ a1 : a2 : a3 : · · · : ak, where

∑
i=1 ai = L,

error-tolerance ε.

10

Output: Mixing tree T (N,E), where N is the vertex set of the mixing tree. The non-
leaf nodes represent different mixing operations whereas the leaf nodes represent the
pure reagents. T (N,E) is basically a directed acyclic graph where the edges e (e ∈ E)
defines the dependency among different mix operations. Many algorithms can be found
in the literature to solve this problem [1, 32], the intermediate nodes of T represent
mix-split or mix-separate operations and the leaf nodes act as pure reagents.

To realize a sample preparation on a microfluidic biochip, the task is to map the T
into the biochip, i.e., mapping of intermediate nodes of a T with some on-chip microflu-
idic module (e.g., mixer). This problem is defined as application binding or module
binding. The general convention is to schedule the mixing tree T , then compute the
feasible component binding and finally, the feasible placing of the modules. However,
since we consider the fluidic transport constraint, we may get some unsolvable situations
in the scheduling phase itself as shown in Figure 2.4 . So we simplified the problem and
assumes: (a) only 2×2 mixer for performing any mixing operation, (b) left-factoring of
the initial mixing tree Figure 4.4, (c) a postorder traversal of the left-factoring tree for
the assignment problem. These assumptions reduce the corresponding scheduling and
placement into deterministic problems.

11

Chapter 3

Proposed Methodology and Overview

The PMD cannot execute onchip movement of fluid, therefore the mix operations need
to be performed without any movement of fluids. Thus, the fluids need to placed ad-
jacently so that they are available for successive mix operations. Such a configuration
may lead to deadlock and thus mix may not be possible. Therefore, we consider for our
work only mixing trees with each node having incoming edge weight sum 4.
The mixing trees are placed on PMD using the algorithm we term as No-Transport
Mixing(NTM) Chapter 4. The algorithm uses postorder traversal of tree to maintain
chronological order of mix operations.
Later in Chapter 5 we propose a heuristic for the modification of the initial mixing tree
and then process the updated tree using NTM . This heuristic approach is coined as
Heuristic Distribution Algorithm (HDA). The heuristic is based on equipartition among
different level of the tree. The pipeline of the whole process is summarised in Figure 3.1

Figure 3.1: Proposed methodology for module binding in PMD-based LoC.

12

Chapter 4

Transport-Free Module Binding

The transport constraint in PMD poses a big problem in mixture preparation. Here
we propose a mixing algorithm with no cell-to-cell transportation of fluids namely No
Transportation Mixing (NTM) algorithm.

4.1 Motivation

Sample preparation deal with a large set of mixing trees many of which have same
structural skeleton. A node in a level of a tree is equivalent to mix of 4 same nodes in a
level below. A pure reagent leaf node can be modeled as a mix node with that particular
reagent in its lower level and also any reagent node can be permuted among themselves
in a particular level [33]. So any mixing tree can be modelled as a complete tree. All
the trees can thus be modelled as complete trees. Therefore, most general case of a tree
is complete tree with all different reactants at the leaf nodes as shown in Figure 4.1.
Any algorithm, able to bind a complete mixing tree with all different reactant fluids,
will also be able to bind all the mixing trees structurally similar to it. The structurally
similar trees, which is large in numbers can also be placed using same procedure and
that too in less time and space. Thus, binding algorithm for the general case is the
bottle-neck. We propose a solution for module binding as No Transport Mixing (NTM)
Algorithm. NTM algorithm is developed in frame of, the most general case of complete
mixing tree. NTM achieves the mix of complete tree with 64 different reactant fluids as
shown in Figure 4.1. NTM always places the reactant fluids in a manner that they are
always available for subsequent mixing operations.

13

M2

M6 M7 M8 M9

M3

M10 M11 M12 M13

M4

M14 M15 M16 M17

M5

M18 M19 M20 M21

M1

64 leaf nodes (reactant fluids)

[r1,r2,r3,r4] [r17,r18,r19,r20] [r61,r62,r63,r64][r33,r34,r35,r36]

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1

r1 : r2 : r3 ... : r63 : r64 = 1 : 1 : ... : 1 : 1

(a)

(b) (c) (d)

(e) (f) (g)

Figure 4.1: (a) A mixing tree for target ratio r1 : r2 : . . . : r64 ≡ 1 : 1 : . . . : 1 obtained
by genMixing [1] and module binding at time cycle (b) t = 1, (c) t = 2, (d) t = 3, (e)
t = 4, (f) t = 5 and (g) t = 6.

14

4.2 Problem Formulation

The problem can be formulated as follows:
Input: (i) Mixing tree T (N : Nodes, E : Edges), where indegree(ni) = 4 ∀ ni ∈ N
and weight(ei) = 1, 2 or 3 ∀ ei ∈ E. All internal nodes represent ‘mix’ nodes while
all leaf nodes represent reagent fluids. (ii) Grid graph G(C : Cells), where the nodes
ni ∈ N are arranged in a 2-D grid like structure with edges ei ∈ E connecting adjacent
nodes.
Output: An assignment set A = (TimeStamp, LoadCells, MixCells, WashCells). This
setA is a binding sequence (mapping) of nodes of the tree T to the on-chip locations of
the grid G.
Objectives: To execute a mixing tree such that (i) chip area is minimized to ensure
minimal space utilisation and (ii) mixes executing in parallel are maximized to ensure
fast completion of bioassay.

4.3 Proposed Approach

4.3.1 Requirements

The proposed algorithm assumes the following requirements:

1. Inter/intra level sharing among mix nodes is not allowed.

2. Washing is done after every mix operation since the out degree of a mixing node
can be 1, 2 or 3.

3. The sum of incoming edge-weights of a mixing node should be 4.

4.3.2 Modelling

The following modelling is used for the proposed algorithm for module binding prob-
lem:

15

C1,1

C1,0

C1,-1

C1,-2

C0,1

C0,0

C0,-1

C0,-2

C-1,1

C-1,0

C-1,-1

C-1,-2

C-2,1

C-2,0

C-2,-1

C-2,-2

II I
C-2,1 C-1,1 C0,1 C1,1

C-2,0 C-1,0 C0,0 C1,0

III IV
C-2,-1 C-1,-1 C0,-1 C1,-1

C-2,-2 C-1,-2 C0,-2 C1,-2

(a) (b)

Figure 4.2: Illustration of proposed modelling for (a) PMD based LoC as a (b) 2-D grid
graph.

1. Mixing Tree T (N,E): The sample preparation is an important part of many
bioassays. This mixing could be modelled as a Tree where leaf nodes are reagents
and internal nodes are intermediate mixture of those reagents or other mixtures.

2. Grid Graph G({C}): We model PMD based LoC as a W × H grid like 2-D
structure as shown in Figure 4.2. The grid graph is composed of cells representing
the usual points in 2-D plane. The chambers of PMD based LoC correspond to
these cells in grid graph while the valves in PMD based LoC correspond to edges
between adjacent nodes in grid graph which are not necessary for placement.

3. Cells Cx,y: A cell in grid graph is an ordered pair (x, y) in 2-D plane. Cell Cx,y

represents the location in grid graph where the final mixing is to be achieved.

4. Module Mx,y: A 2 × 2 mixer of PMD based LoC can be modelled as a module.
It is composed of 4 cells < Cx,y, Cx−1,y, Cx−1,y−1, Cx,y−1 > representing the flow
of mix. The ID of the mixer represents the top right corner of 2× 2 module.

5. LOAD(Module: Mx,y, ReagentNode: Ri): This operation of PMD, loads the
reagent onto the module and returns the cell Cx,y where the reagent Ri is loaded.

6. WASH(Module: Mx,y, Volume:V): This operation of PMD, washes off V num-
ber of cells from the module and returns a set of washed cells {Cx,y}.

7. Assignment Set A: This is a set of tuple (t : TimeStamp, LC : LoadCells, MC :

MixCells, WC : WashCells) representing the schedule and placement of mixing

16

tree as follows: At timestep ‘t’, first load the cells with reagents as specified in
LC , then mix the cells specified in MC and finally wash off WC cells.

The mix corresponding to root node is performed in a 2×2 module having each cell
in a different quadrant. We introduce the notion of parallelism as degree of freedom.

4.4 Degree of Freedom (DoF)

Degree of freedom for a mixing module is the number of its sub-mixes (or child mixes)
that can be performed in parallel on the chip. Depending upon the sub-mixes of the
root node, sub-mixes can be performed in parallel in each of the quadrant and thus has
a degree of 4. Visualisation for DoF = 4, 2 and 1 is shown in Fig 4.3. In general, based
on degree of freedom of the current mix node, the degree of freedom of the sub-mixes
is determined.

(a) (b) (c)

d = 4

d = 1d = 1

d = 1 d = 1

d = 2

d = 1d = 1 d = 1

d = 1

Figure 4.3: Degree of Freedom (DoF) in case of (a) DoF = 4, (b) DoF = 2 and (c)
DoF = 1, where rounded squares represent parent mixer node (blue) and child mixer
nodes (white) in a tree.

4.5 Left Factoring

There is a pre processing step involved before directly supplying input to our proposed
algorithm. This is called Left Factoring. As the name suggests, this step transforms the
tree in a format that all the child nodes are connected in decreasing order of their edge
weigths with parent node. This is shown in Figure 4.4, where the mixing tree on left
has node M1 whose children are in order M2,M3. Left Factoring re-arranges the nodes

17

such that nodes with higher edge weights appear first in breadth first search traversal of
tree. Hence, the left factored version (on the right of Figure 4.4) has M3 appearing first
and then M2, and similarly M5 appearing first and then M4. This does not at all alter
the mixing tree but only changes the order of children stored in the data structure. This
method is realized using the LeftFactoring function in pseudocode.

M1

M2 M3

M4 M5

[r1,r2,r2,r4]

[r2,r3,r3,r4]

24:18:12:10
[r1]

[r1,r1,r2,r2]

1

1 3

2

M1

M3 M2

M5 M4

[r1,r2,r2,r4]

[r1,r1,r2,r2]

24:18:12:10
[r1]

[r2,r3,r3,r4]

1

3 1

2Left Factoring

Figure 4.4: Left Factoring a mixing tree (left) shifts the higher edge weight carrying
nodes to the left. The resultant is a left factored tree on right.

4.6 No Transport Mixing (NTM)

Starting from the root node, which is placed at the center of grid, i.e., origin, we assign
its degree of freedom as 4. Based on number of mixer nodes in the root’s children
nodes, the degree of freedom is divided accordingly among the child-mixers. Now, the
child-mixers are performed in parallel. The algorithm runs a post-order traversal of the
sub-tree to ensure that a mix performs only when its sub-mixes have completed. Mix
operation of current node is followed by a wash operation. The washing depends on how
many fluid cells of that mix is used in its parent mix. For example, if the edge-weight
of a mix is 1, then after mixing is done, 3 cells are washed off and only 1 is kept. This
placement of mixing tree is executed in a recursive manner as written in Algorithm 1,
named as NTM, until all the nodes are placed on the grid.

4.6.1 Example

Consider an example mixing tree T described in Figure 4.4 whose target ratio is 24 :

18 : 12 : 10. The mixing tree is not necessary has to be a genMixing generated tree, it

18

can be any tree satisfying the constraints of input of our algorithm. Suppose we choose
the coordinate axis for our PMD chip as described in Figure 4.2 and wish to place root
node at C0,0. The algorithm first computes the left factored tree T ′ and then placed the
tree in the following manner:

1. Starting from the root node M1 at first its DoF is distrubuted among its children
M3 and M2. Since the DoF of M1 is 4 so both M3 and M2 are assigned with
equal DoF of 2 and the modules M0,1 and M0,−1 are assigned to M3 and M2

respectively.

2. M2 has no children, so Algorithm 2 directly loads the reagents in the module and
performs the mixing operation and finally washes its 3 nodes since the out degree
of M2 is 1. This occurs at time stamp t = 1. Simultaneously M3 places M5 and
the module M0,1 is assigned to it as shown in Figure 4.5(a). The washed nodes
are shown in light orange color.

3. After the completion of M5, the cell C−1,1 is washed off and the module M−1,2 is
assigned to M4. Reagents required for M4 are loaded and mixed and then 3 of its
nodes are washed off, this happens at time t = 2 as shown in Figure 4.5(b).

4. At t = 3, reagents of M3 are ready so the corresponding mixing, and then 2 node
washing is done as shown in Figure 4.5(c) at t = 3.

5. Finally, the reagent r1 is loaded and M1 is now ready to execute. This is depicted
in Figure 4.5(d).

This is how the placement algorithm works. There are cases to think of for example,
how to assign Module to its children and deciding which mixes can happen in parallel
and which require serial execution. The intrinsic details about this are skipped for sim-
plicity purposes. A demonstration of the GUI based tool developed by us is available
in our personal site, whose link is not included here to keep our identity secret at this
initial submission stage, which follows a double-blind review process.

19

(b) (c) (d)(a)

Figure 4.5: Module binding using NTM for left factored tree (as in Figure 4.4 at time
cycle (a) t = 1, (b) t = 2, (c) t = 3 and (d) t = 4.

Algorithm 1: placeNTM(T , G, Cx,y)
Input: Mixing Tree T (N,E), Grid Graph G{Ci,j|i, j ε Z+} and Cell Cx,y

Output: Assignment Set A of tuple (TimeStamp t, LoadCells LC , MixCells MC ,
WashCells WC)

begin
/* Pre-processing the mixing tree T */

1 T ′ ← LeftFactoring(T);
/* Initialize Assignment Set */

2 A ← φ;
/* Place root node of T ′ at cell Cx,y with DoF = 4 and starting from time
step 1 */

3 return placeHelper(T ′.root, G.module(Cx,y), 4, 1);

end

20

Algorithm 2: placeHelper(n,Mx,y, DoF, t)
Input: Tree Node n, Mixer Module Mx,y, Degree of Freedom DoF , Time t
Output: Assignment Set A of tuple (TimeStamp t, LoadCells LC , MixCells MC ,
WashCells WC)

begin
1 A ← φ; /* Initialize Assignment Set */
2 LC ← φ; MC ← φ; WC ← φ;

/* Recursively place every child of this mix node */
3 for childi in n.children do
4 if n.type == ‘MIX’ then

/* Place child mixers */
5 Mxi,yi ⊂ G s.t. |Mxi,yi ∩Mx,y| ≥ childi.outgoingEdgeWeight6 /*

Corresponding DoFi is computed for childi (refer sec. 4.4)*/
/* We keep a reference ti to keep track of time taken by childi mix
operation */

7 if i == 0 then
8 ti ← t; // (pass-by-reference)

end
9 else if childi mixes in parallel with childi−1 then

10 ti ← ti−1; // (pass-by-value)
end
else

11 ti ← ti−1; // (pass-by-reference)
end

1213 ti ← max(ti, t);
14 A ← A ∪ placeHelper(childi, Mxi,yi , DoFi, ti);

end
15 else if n.type == ‘REAGENT’ then

/* Load child reagents in module Mx,y */
16 Cxi,yi ← LOAD(Mx,y, childi);
17 LC ← LC ∪ (childi, Cxi,yi);

end
end
/* Mix module Mx,y */

18 MC ← (n,Mx,y);
/* Wash specific volume of module Mx,y */

19 WC ← WASH(M , n.outgoingEdgeWeight);
/* Update Assignment Set A */

20 A ← A∪ (t, LC ,MC ,WC);
/* Increment the time counter */

21 t← t+ 1
22 return A;

end 21

4.6.2 Complexity Analysis

To analyze the performance of our NTM algorithm, we present its time and space com-
plexity in terms of number of nodes in mixing tree.

Time Complexity: Consider the worst case scenario of complete quaternary mixing
tree of depth d, with depth of root node as d = 0. Then total time taken for the mixing
can be found by the following relation

T =
d∑

i=0

4d

4

This relation is derived from the basic principle that in 2×2 mixer, 4 mix operations
can be performed in parallel. So, in each level, the total mix operations can be divided
in groups of 4. Starting from lowest level of mixes in tree, where total mix nodes are 4d

(since it is at depth d), it takes 4d

4 mixing time steps (ignoring the time for loading/wash-

ing). Then, at depth d− 1, it takes 4d−1

4 and similarly for upper levels. Summing up all
the time steps in each level will yield the relation as shown above.

Space Complexity: On similar grounds, the worst case scenario of complete qua-
ternary mixing tree of depth d, with depth of root node as d = 0. Then space consumed
on grid for the mixing can be found by the following relation:

S = 2(d+ 1)× 2(d+ 1) for d = 1, 2, 3, ...

This relation can be easily derived looking at the placement of full quaternary mixing
tree of depth d. Root node (depth, d = 0) is placed at center or origin i.e. its corner is at
(0, 0). At depth d = 1, the mix node placed farthest from origin is at (1, 1). Similarly,
the mix node at depth d is placed at (d, d). The total space consumed from 1st quadrant
(starting from 0) is (d + 1) × (d + 1). Combining all 4 quadrants, the height H and
width W of grid used will be 2(d+ 1)× 2(d+ 1) as shown in Figure 4.6.

22

d = 0

d = 1

d = 2

Figure 4.6: On chip placement, using NTM, of the farthest placed mixing nodes
(rounded square boxes) present at varying depths d = 0, 1, 2, ... of a general mixing
tree.

23

Chapter 5

Mixing Tree Customization

The input mixing tree for NTM is a set of all the trees having, non-leaf nodes with
incoming edge weight sum of 4. There may exist more than one tree having different
structures but yielding same final-mix of the reagents. Such trees vary widely in their
execution times according to NTM. Thus, it is to our advantage that we select the tree
that possess minimum execution time and yields same final-mix.

5.1 Motivation

Even though NTM is able to bind mixing trees to PMD, it does not employ parallelism
to fullest when there is possibility of achieving it through some other sequence of steps.
Same mix ratio can be achieved through various mixing trees as shown in Figure 5.1(a),
(b). The execution times of these mixing trees vary widely using NTM. The execution
time for both the referred mixing trees are shown in Gantt charts in Figure 4.4(c), (d).
Tree(a) completes its execution in 10 time cycles where as tree(b) completes in 4 time
cycles. For tree(a), quad3 performs most of the mixes whereas they are evenly dis-
tributed for tree(b). The distribution of mixes can significantly improve the execution
timing of NTM. NTM enables parallelism among mixers.These mixers need to perform
in parallel in order to avoid overloading on some of them. Hence, it becomes a crucial
problem to modify the given mixing-tree so that parallelism is maximized. We present a
heuristic to improve the NTM algorithm in terms of time cycles required for completion
of sample preparation.

24

1 2 3 4 5 6 7 8 9 10 1 2 3 4

Quad1

Quad2

Quad3

Quad4

Quad1

Quad2

Quad4

Quad3

M1

M2 M3 M4

M5 M6 M7 M8

M9 M10 M11 M12
[r1,r1,r2,r2] [r2,r3,r3,r3] [r4,r4,r4,r5]

[r3,r3,r4,r4]

[r2,r3,r3,r3][r1,r1,r2,r2] [r4,r4,r5,r6]

[r1,r2,r2,r2]

[r6]

[r5,r5,r6,r6]

26:63:47:43:7:70

Time Cycle
Time Cycle

M12

M11

M10

M9

M8

M7

M6

M5 M2

M3

M4

m1

M1

M2

M3

M5 M9 M10M11 M12 M6 M7 M8 M4

M1

(a) (c)

(b) (d)

M1

M2 M3 M4 m1

M5

M9 M10 M11 M12
[r2,r3,r5,r6]

M6 M7 M8

[r2,r3,r4,r6] [r1,r3,r4,r5] [r1,r2,r2,r5]

[r2,r3,r6]

[r2,r4,r6][r2,r4,r6]

[r2,r2,r5]

[r2,r3,r6]

[r1,r3,r4] [r1,r2,r4]

[r1,r3,r6]

26:63:47:43:7:70

1 1 1

11 1 1

11 1 1

11 1 1

11 1 1

11 1 1

(e)
Quad1Quad2

Quad4Quad3

Figure 5.1: For a target ratio 26 : 63 : 47 : 43 : 7 : 70 of six reactant fluids
r1, r2, r3, r4, r5, r6, (a) a mixing tree obtained by genMixing [1] and (b) the Gantt chart
showing its schedule, and (c) a modified mixing tree and (d) Gantt chart showing its
schedule. (e) Four quadrants used for mixer module binding on an 8× 8 PMD chip.

5.2 Problem Formulation

Input: A mixing tree T (N : Nodes, E : Edges), where indegree(ni) = 4 ∀ni ∈ N

and weight(ei) = 1, ∀ei ∈ E. All internal nodes represent ‘mix’ nodes while all leaf
nodes represent reagent fluids.
Output: A modified mixing tree T ′(N ′ : Nodes, E ′ : Edges), where indegree(ni) =

4, ∀ni ∈ N ′ and weight(ei) = 1 ∀ei ∈ E ′.
Objectives: To minimize the bioassay completion time without altering the final mix-
ratio by modifying the tree. We try to equalize the size of each sub-tree.

25

5.3 Heuristic Distribution Algorithm (HDA)

We propose a heuristic to maximize parallelism among the mixers. The heuristic is for
mixing-trees that have all the edge weights as 1 and indegree for all nodes as 4. But
may also be extended for cases having edge weights not equal to 1, by replicating the
sub-tree same number of times as its out-going edge weight. The heuristic is based on
the principle, the mixes in same level of a tree can be permuted [1]. Based on the
principle, we propose a method to permute mixes so that they are evenly distributed
over the tree. The root of a mixing tree is placed at the center of the grid and hence,
its child-mixes are performed in separate quadrants. Separate quadrants correspond to
parallel mixing modules and we call them as threads. Therefore, we distribute mixes
evenly among these threads.

M1

R1

1

R1 R1

1 1

Equivalent

M1

m0

1

R1

1

R1

1

Figure 5.2: Substitution of a reagent R1 with a dummy mix node m0 and its 4 children
R1 results an equivalent of a mixing tree.

The pseudo-code of HDA written as Algorithm 3 is explained below:

1. Mixers and reagents in ith depth are represented byMi andRi, respectively. Max-
imum of Mi across all the depth is calculated.

2. MAX THREADS is assigned the maximum of 4 or maxMixers. This represents
the maximum number of THREADS that we need. Since, we cannot have more
than 4 parallel mixers inside a 2 × 2 mixer, the MAX THREADS cannot be more
than 4.

3. We create as many number of THREADS as an array as MAX THREADS for each
level.

4. And join them into a bigger array ∆.

26

5. If for any depth of the tree, the number of mixes in the depth is less than threads,
we add a dummy mix node at that depth corresponding to a reagent r.

6. Pop that reagent r.

7. And add 4 reagents of same type r in the reagent list Ri+1 depth below it. Ba-
sically, one unit of reagent in a depth is equivalent to 4 units of it in one depth
below as shown in Figure 5.2.

8. Then, the Mixes and Reagents in a depth are distributed evenly among all threads
at same depth.

9. After this, the parent children connection reassignment step is done as shown in
Figure 5.3. The mixes and reagents in corresponding threads at depth i are linked
to corresponding threads at depth i+ 1.

10. Each of thread corresponds to a tree and these threads are finally clubbed to create
the new tree T ′.

27

Algorithm 3: HDA(T)
Input: Mixing tree T (N , E), where indegree(niεN) = 4 and weight(eiεE) = 1
Output: Modified mixing tree T ′(N ′ , E ′), where indegree(niεN) = 4 and
weight(eiεE) = 1

begin
/* Mi, Ri is list of mixers and reagents at depth i in tree T and D is depth of
T where D = 0, 1, 2, 3, · · · */

1 maxMixers←maxDi=1(Mi.size);
2 MAX THREADS← min(4,maxMixers);

/* Initialize thread set ∆ where ∆i,j,k represents kth Mixer (mk) of jth thread
at ith Depth */

3 for i: 1→ D do
/* Create array of MAX THREADS empty bins B = [Bin1, Bin2, ...] */

4 ∆i.push(B);
end

5 for i: 1→ D do
while Mi.length < MAX THREADS do

6 Mi ←Mi ∪mk /* Introduce new dummy mix nodes mk; */
7 r ← Ri.pop();
8 Ri+1 ← Ri+1 ∪ {r, r, r, r};

end
/* Distribute all mixers mk ∈Mi over all threads at ith depth */

9 for k: 1→Mi.length do
10 x← k mod MAX THREADS;
11 ∆i,x.push(mk);

end
/* Distribute all reagents rk ∈ Ri over all threads at ith depth */
for k: 1→ Ri.length do

12 x← k mod MAX THREADS;
13 ∆i,x.push(rk);

end
end

14 Root← T .root; /* Re-assign all node-children connection of given Tree T */
/* Assign Root as parent node of < ∆1,1,1, ..., ∆i+1,MAX THREADS,1 > */

15 for i: 1→ D − 1 do
16 for j: 1→ MAX THREADS do
17 L← ∆i+1,j .length;
18 for k: 1→ bL/4c do

/* Assign ∆i,j,k as parent node of ∆i+1,j,x where
x = k, k + 1, k + 2, k + 3 */

end
19 k ← k + 1;

/* Assign ∆i,j,k as parent node of ∆i+1,j,x where x = k, · · · , L */
end

end
return T ;

end

28

5.3.1 Example

Consider the mixing tree as shown in Figure 5.1(a) which is generated by genMixing [1].
To get equivalent tree according to HDA, for we proceed as follow :

1. First generate lists Mi and Ri for each depth.

2. Calculate MAX THREADS which is 4 since none of the level has more than 4
mixing nodes. So, 4 threads of parallel mixers are created.

3. At first level since there are 3 mixers, but need to be 4. So create a dummy mixer
m1 which mixes 4 reagents of same type, here r6. Then append M1 with m1 and
also add 4 reagents of type r6 to reagent list of the level below this depth.

4. Distribute all mixers and reagents at each depth in groups of 4 threads. Re-assign
the child parent connection of nodes at depth i and i + 1 as shown in Figure 5.3.
The node at depth i is assigned parent of 4 consecutive nodes at depth i+1. Then
the next node at depth i is assigned the next set of 4 nodes. We do this until all
nodes of depth i+ 1 are assigned a parent in depth i.

5. Then move to next level and repeat the process until the last level where no as-
signment occurs.

6. Merge the 4 threads by assigning the top level node of each thread as child of the
root node.

Figure 5.3: Parent children re-assignment step of depth i with depth i+ 1.

29

Chapter 6

Simulation Results

We consider a set of 50,000 or maximum possible (which ever is minimum) ratios
for all ratio sum L = 64, 256, 1024 and varying the number of reactant fluids k =

3, 4, 5, · · · , 12. We perform two runs over the generated ratios to evaluate the parameter
values. In the first run, we evaluate parameter values without HDA and in the second
run we evaluate parameter values with HDA.

6.1 Environment Setup

Simulations are performed on a computer with a 3.70 GHz Intel Xeon processor and 16
GB memory running 64-bit Ubuntu 16.04 operating system. The code was written in
Python 3.7 within the Anaconda Environment Packages. Jupyter-Notebooks were used
to maintain literate programming style.

6.2 Results and Analysis

The performance is analyzed on 4 parameters: T (Time cycles for completion), C (Num-
ber of cells used on grid), V (Number of valves used on grid) and A (Total actuations of
valves for mixing).

30

6.2.1 Performance Evaluation Based on L

Table. 6.1 represents the average values of the parameters over all the ratios having
L = 64, 256, 1024. The average time cycles required for executing different test cases
reduces with HDA. The average number of cells required and average valves involved
are also less with HDA. On the other hand the average actuations of valves over the
testcases increase with HDA because HDA introduces new mix nodes and the number
of valve actuations increases with the number of mix nodes.

Table 6.1: Comparison between NTM and HDA + NTM on the basis of Avg. Completion
Time Tavg, Avg. #Cells Cavg, Avg. #Valves Vavg and Avg. #Actuations Aavg for L =
64, 256, 1024.

L (d)
NTM HDA + NTM

Tavg Cavg Vavg Aavg Tavg Cavg Vavg Aavg

64 (3) 4.23 13.66 18.01 24.82 3.08 11.96 15.47 28.56
256 (4) 5.09 13.20 17.76 27.49 3.99 10.16 12.65 34.45
1024 (5) 5.95 12.68 16.99 30.64 4.99 9.55 11.86 42.16

6.2.2 Performance Evaluation Based on k

Figure 6.1 depicts the performance of both runs on the 4 parameters, with L = 64 and
ratios having k reagents. The difference in avg. completion time is more prominent
with increasing number of reagents Figure 6.1(a). The avg. number of cells and valves
used are less for HDA + NTM, but the difference diminishes with number of reagents.
The avg. number of actuations increase for HDA + NTM, and the difference increases
with k, which represents more number of mix nodes introduced in the mixing tree of
HDA.

31

3 4 5 6 7 8 9 10 11 12
Reagents, K

0

1

2

3

4

5

Av
g.

 C
om

pl
et

io
n

 T
im

e,
 a

vg
NTM
HDA + NTM

(a)

3 4 5 6 7 8 9 10 11 12
Reagents, K

0

5

10

15

Av
g.

 #
 C

el
ls

 U
se

d,

av
g

NTM
HDA + NTM

(b)

3 4 5 6 7 8 9 10 11 12
Reagents, K

0

5

10

15

20

Av
g.

 #
 V

al
ve

s
 A

ct
ua

te
d,

 a
vg

NTM
HDA + NTM

(c)

3 4 5 6 7 8 9 10 11 12
Reagents, K

0

10

20

30

40

Av
g.

 #
 V

al
ve

 A
ct

ua
tio

ns
,

av
g

NTM
HDA + NTM

(d)

Figure 6.1: Distribution of (a) Avg. Completion Time Tavg, (b) Avg. Cells Cavg used,
(c) Avg. #Valves Vavg actuated and (d) Avg. #Valves Aavg actuations for ratio sum,
L = 64 (d = 3) and over k = 3, 4, 5, · · · , 12 for NTM and HDA + NTM.

6.2.3 Performance Evaluation for Some Testcases

Table. 6.2 shows six random ratios from the testcases and their parameter values for
both NTM and HDA + NTM. Time cycles and cells used for preparing the mix is always
less with HDA. Total valves involved in the mix also decreases as the number of valves
involved vary directly with number of cells involved. Total actuations of valves increase
or remain same with HDA, it remains same when no new mix operations are introduced
in HDA for all the test cases.

32

Table 6.2: Comparison between NTM and HDA + NTM on the basis of Completion
Time T, #Cells C, #Valves V and #Actuations A for six different ratios.

Target Ratio
NTM HDA + NTM

T C V A T C V A
1 1:1:1:1:3:59:63:127 9 20 28 44 4 16 20 52
2 2:4:6:11:11:15:15 6 21 28 36 3 16 20 36
3 3:63:63:127 8 19 26 40 4 12 15 40
4 1:97:159:767 7 16 22 36 5 8 10 36
5 3:63:78:112 5 14 19 28 4 8 10 28
6 2:3:3:3:4:4:45 4 14 19 24 3 12 15 28

6.2.4 Comparative Heatmaps for Valve Actuations of a Testcase

The distribution of number of actuations on valves is also an important measure to an-
alyze the algorithm’s efficiency. The number of valves exceeding the threshold value
are prone to breakage. Figure 6.2 depicts the heatmap for number of actuations of each
valve. The heatmap is for the two mixing trees given in Figure 5.1(a) and Figure 5.1(c).
The distribution of actuations on valves in case of HDA + NTM is evenly distributed,
where as it varies largely for NTM.

(a) (b)

Figure 6.2: Heatmap for number of actuations of valves on the 8× 8 PMD chip for (a)
the mixing tree shown in Fig. 5.1(a) and (b) the mixing tree obtained by HDA shown in
Fig. 5.1(c), after module binding performed by NTM algorithm.

33

Chapter 7

GUI Based Simulation Tool

We have developed a simulator to visualize the placements on the chip. The tool maps
the coordinates assigned for placement on chip to the grid and shows the state of PMD
chip after every time slice.

The PMD grid is visualized as shown in Figure 7.1. The fluid chambers are repre-
sented as white plus signs and the valves are represented as green bars. The left-bottom
is inlet and top-right is outlet for the PMD. The valves are shown green, when in closed
state and pale orange when in open state. The chamber represents the fluid it is filled
with, here ’b’ represents the buffer filled in all the chambers. The path from inlet to
outlet for loading a fluid is represented by continuous grey cells.

Figure 7.1: A snapshot of the tool at the beginning of execution

34

7.1 Implementation Details

The visualization tool has been developed using matplotlib library in Python. The mod-
ule takes the placement information generated by NTM, and generates a series of snap-
shots of the state of the device using the flow shown in Figure 7.2.

Figure 7.2: Flow for simulating the placement

The tool creates simulations from the placement information generated by NTM.
At first the route from inlet to placed cells and further to outlet cell is determined. A
continuous sequence of cells is determined along which the fluid needs to be flown in
order to achieve the placed fluid at its designated position. The valves that need to be
switched are determined from this path and the mix operations executing at the current
time. The simulator marks the valves from the status determined in previous step. The
state of valves and fluid is plotted using the simulator in every time slice and time slice
corresponds to time interval for movement from one cell to any adjacent cell.

We have created a class of Grid with initalization code as described below. The grid
is assumed to be in the first quadrant with origin at its bottom left corner. The mixer
cycles denotes the number of cycles needed for mixing. Some helper functions like
plot grid(), etc. are also used.

1 c l a s s Gr id :
2 d e f i n i t (s e l f , ID , i n l e t , o u t l e t , h e i g h t , width ,
3 b u f f e r = ’ b ’ , m i x e r c y c l e s =5) :
4 s e l f . ID = ID
5 s e l f . INLET , s e l f . OUTLET = i n l e t , o u t l e t
6 s e l f . HEIGHT , s e l f .WIDTH = h e i g h t , w id th
7 s e l f . BUFFER = b u f f e r
8 s e l f . MIXER CYCLES = m i x e r c y c l e s
9

10 s e l f .G = s e l f . i n i t g r a p h ()
11 s e l f . t i m e c y c l e = 1

35

12

13 ### Take a S n a p sh o t o f i n i t i a l PMD Grid ###
14 s e l f . p l o t g r i d (s e l f .G)
15 r e t u r n
16

7.2 Example

7.2.1 Load Operation

(a) (b)

(c) (d)

Figure 7.3: Load Operation in GUI tool

36

The Load operation as displayed via sequences of snapshots in Figure 7.3 has been
coded as described below.

1. First, we obtain a route from inlet to outlet that passes through the cells which
need to be loaded, here (4, 4). Here, in Figure 7.3(a), the cells highlighted in gray
represent the path from inlet, which is at (0, 0), to outlet, which is at (7,7) through
(4, 4).

2. The required fluid, here r1, is flown through load route as shown in Figure 7.3(b).

3. Another route, wash route, is also obtained which includes all cells of load route
but excludes cells which need to be loaded, here (4, 4). The cells highlighted in
gray in Figure 7.3(c) represent the path for wash route. BUFFER SOLUTION is
flown through wash route to remove the un-necessary fluid.

4. Finally, the required cells, here (4, 4), are loaded with fluid r1 and the snapshot
of the grid is saved to disk after the Load operation.

1 c l a s s Gr id :
2 . . .
3 d e f Load (s e l f , f l u i d , n o d e l i s t) :
4 # Find t h e r o u t e from i n l e t t o o u t l e t t h r o u g h n o d e l i s t
5 # Find a n o t h e r r o u t e same as p rev . b u t e x c l u d i n g n o d e l i s t
6 l o a d r o u t e , w a s h r o u t e = s e l f . f i n d r o u t e (s e l f . G, n o d e l i s t)
7

8 # Flow t h e f l u i d a l o n g l o a d r o u t e
9 s e l f . f l o w (s e l f . G, f l u i d , l o a d r o u t e)

10

11 # Mark n o d e l i s t a s ’ used ’
12 s e l f . ma rk nodes (s e l f . G, used = n o d e l i s t , unused = [])
13

14 # Flow t h e b u f f e r a l o n g w a s h r o u t e
15 s e l f . f l o w (s e l f . G, s e l f . BUFFER , w a s h r o u t e)
16

17 ### Take a S n a p sh o t a f t e r Load o p e r a t i o n ###
18 s e l f . p l o t g r i d (s e l f .G)
19 r e t u r n
20

37

7.2.2 Wash Operation

(a) (b)

(c)

Figure 7.4: Wash Operation in GUI tool

The Wash operation as displayed via sequences of snapshots in Figure 7.4 has been
coded as described below.

1. First, we obtain a route, wash route, from inlet to outlet that passes through the
cells which need to be washed, here (4, 4). Here, in Figure 7.4(a), the cells high-
lighted in gray represent the path from inlet, which is at (0, 0), to outlet, which is
at (7,7) through (4, 4).

38

2. BUFFER SOLUTION is flown through wash route to wash of the required cells,
here (4, 4) as shown in Figure 7.4(b).

3. Finally, the required cells, here (4, 4), are washed off and the snapshot of the grid
is saved to disk after the Wash operation.

1 c l a s s Gr id :
2 . . .
3 d e f Wash (s e l f , n o d e l i s t) :
4 # Find t h e r o u t e from i n l e t t o o u t l e t t h r o u g h n o d e l i s t
5 w a s h r o u t e , = s e l f . f i n d r o u t e (s e l f . G, n o d e l i s t)
6

7 # Flow t h e b u f f e r a l o n g w a s h r o u t e
8 s e l f . f l o w (s e l f . G, s e l f . BUFFER , w a s h r o u t e)
9

10 # Mark w a s h r o u t e as ’ un−used ’
11 s e l f . ma rk nodes (s e l f . G, used = [] , unused = n o d e l i s t)
12

13 ### Take a S n a p sh o t a f t e r Wash o p e r a t i o n ###
14 s e l f . p l o t g r i d (s e l f .G)
15 r e t u r n
16

7.2.3 Mix Operation

The Mix operation as displayed via sequences of snapshots in Figure 7.5 has been coded
as described below.

1. For each mixer module in mixer list, we actuate corresponding valves. For each
time cycles, the valves inside each mixer module are actuated periodically.

2. Finally, the snapshot of the grid is saved to disk after the Mix operation.

1 c l a s s Gr id :
2 . . .
3 d e f mix (s e l f , m i x e r l i s t) :
4 f o r i i n r a n g e (s e l f . MIXER CYCLES) :
5 # A c t u a t e r e q u i r e d v a l v e s f o r each mixer a t i ˆ t h t ime

c y c l e
6 . . .

39

7 s e l f . a c t u a t e (v a l v e s o p e n i , v a l v e s c l o s e i)
8

9 # Take a S n a p sh o t a t i ˆ t h t ime c y c l e
10 s e l f . p l o t g r i d (s e l f .G)
11 # Take a S n a p sh o t a f t e r MIX o p e r a t i o n
12 s e l f . p l o t g r i d (s e l f .G)
13 r e t u r n
14

(a) (b)

(c) (d)

Figure 7.5: Mix Operation in GUI tool

40

Chapter 8

Conclusions and Future Work

A lot of work has been done on the automation of sample preparation for different
microfluidic technologies.In this paper, we present an algorithm for binding of such
application on a PMD chip. The fluid-section transport problem is defined and we model
the proposed algorithm considering this technology specific constraint. The proposed
binding method can realize any mixing tree using optimal number of PMD cells. A
heuristic is also proposed to modify a mixing tree generated using genMixing for mixer
size equals to four. The mixing operations of the modified mixing tree can be distributed
in an efficient concurrent fashion and helps in reducing the overall operation time. The
modified mixing tree also able to achieve a more reliable PMD chip by distributing the
valve actions.

The future work may be based upon the extension of placement algorithm for a
general N -way mixer. Another possibility is the extension of our heuristic algorithm
(3) to work for edge weights > 1 in the mixing tree.

41

Dissemination from the Dissertation

Gautam Choudhary, Sandeep Pal, Debraj Kundu, Sukanta Bhattacharjee, Shigeru Ya-

mashita and Sudip Roy, “Transport-Free Module Binding for Sample Preparation Using

Programmable Microfluidic Devices”, submitted to IEEE/ACM International Confer-

ence on Computer-Aided Design (ICCAD) to be held in Colorado, USA during Novem-

ber 04-07, 2019.

42

Bibliography

[1] S. Bhattacharjee, S. Poddar, S. Roy, J. D. Huang, and B. B. Bhattacharya, “Dilution and Mixing
Algorithms for Flow-Based Microfluidic Biochips,” IEEE TCAD, vol. 36, no. 4, pp. 614–627, 2017.

[2] S. Bhattacharjee, R. Wille, J. D. Huang, and B. B. Bhattacharya, “Storage-Aware Algorithms for
Dilution and Mixture Preparation with Flow-Based Lab-on-Chip,” IEEE TCAD, vol. (Early Access),
pp. 1399–1404, 2019.

[3] F. Su and K. Chakrabarty, Digital microfluidic biochips: synthesis, testing, and reconfiguration
techniques. CRC Press, 2006.

[4] W. Thies, J. P. Urbanski, T. Thorsen, and S. Amarasinghe, “Abstraction Layers for Scalable Mi-
crofluidic Biocomputing,” Natural Computing, vol. 7, no. 2, pp. 255–275, 2008.

[5] Z. Li, K. Chakrabarty, T.-Y. Ho, and C.-Y. Lee, Micro-Electrode-Dot-Array Digital Microfluidic
Biochips: Design Automation, Optimization, and Test Techniques. Springer, 2019.

[6] S. Einav, D. Gerber, P. D. Bryson, and et. al., “Discovery of a Hepatitis C Target and its Pharmaco-
logical Inhibitors by Microfluidic Affinity Analysis,” Nature Biotechnology, vol. 12, pp. 1019–1027,
2008.

[7] H. C. Fan, Y. J. Blumenfeld, U. Chitkara, L. Hudgins, and S. R. Quake, “Noninvasive Diagnosis of
Fetal Aneuploidy by Shotgun Sequencing DNA from Maternal Blood,” Proceedings of the National
Academy of Sciences, vol. 105, no. 42, pp. 16 266–16 271, 2008.

[8] C. D. Chin, T. Laksanasopin, Y. K. Cheung, and et. al, “Microfluidics-Based Diagnostics of Infec-
tious Diseases in the developing World,” Nature Medicine, vol. 17, pp. 1015–1019, 2011.

[9] H. C. Fan, Y. J. Blumenfeld, U. Chitkara, L. Hudgins, and S. R. Quake, “Noninvasive diagnosis
of fetal aneuploidy by shotgun sequencing dna from maternal blood,” Proceedings of the
National Academy of Sciences, vol. 105, no. 42, pp. 16 266–16 271, 2008. [Online]. Available:
https://www.pnas.org/content/105/42/16266

[10] C. L. Hansen, M. O. A. Sommer, and S. R. Quake, “Systematic investigation of
protein phase behavior with a microfluidic formulator,” Proceedings of the National
Academy of Sciences, vol. 101, no. 40, pp. 14 431–14 436, 2004. [Online]. Available:
https://www.pnas.org/content/101/40/14431

[11] C. Fang, Y. Wang, N. T. Vu, W.-Y. Lin, Y.-T. Hsieh, L. Rubbi, M. E. Phelps, M. Müschen,
Y.-M. Kim, A. F. Chatziioannou, H.-R. Tseng, and T. G. Graeber, “Integrated microfluidic
and imaging platform for a kinase activity radioassay to analyze minute patient cancer
samples,” Cancer Research, vol. 70, no. 21, pp. 8299–8308, 2010. [Online]. Available:
http://cancerres.aacrjournals.org/content/70/21/8299

43

[12] I. E. Araci and S. R. Quake, “Microfluidic Very Large Scale Integration (mVLSI) with Integrated
Micromechanical Valves,” Lab Chip, vol. 12, no. 16, pp. 2803–2806, 2012.

[13] G. Wang, D. Teng, and S.-K. Fan, “Digital Microfluidic Operations on Micro-Electrode Dot Array
Architecture,” IET Nanobiotechnology, vol. 5, no. 4, pp. 152–160, 2011.

[14] J. H. Noh, J. Noh, E. Kreit, J. Heikenfeld, and P. D. Rack, “Toward Active-matrix Lab-on-a-Chip:
Programmable Electrofluidic Control Enabled by Arrayed Oxide Thin Film Transistors,” Lab Chip,
vol. 12, no. 2, pp. 353–360, 2012.

[15] K. Chakrabarty and F. Su, Digital Microfluidic Biochips: Synthesis, Testing and Reconfiguration
Techniques. CRC Press, 2007.

[16] Z. Li, K. Y.-T. Lai, P.-H. Yu, K. Chakrabarty, T.-Y. Ho, and C.-Y. Lee, “Droplet Size-Aware
High-Level Synthesis for Micro-Electrode-Dot-Array Digital Microfluidic Biochips,” IEEE TBCAS,
vol. 11, no. 3, pp. 612–626, 2017.

[17] Q. Wang, H. Zou, H. Yao, T. Ho, R. Wille, and Y. Cai, “Physical Co-Design of Flow and Control
Layers for Flow-Based Microfluidic Biochips,” IEEE TCAD, vol. 37, no. 6, pp. 1157–1170, 2018.

[18] O. Keszöcze, Z. Li, A. Grimmer, R. Wille, K. Chakrabarty, and R. Drechsler, “Exact Routing for
Micro-Electrode-Dot-Array Digital Microfluidic Biochips,” in Proc. of the ASP-DAC, 2017, pp.
708–713.

[19] Y. Zhao, T. Xu, and K. Chakrabarty, “Broadcast Electrode-Addressing and Scheduling Methods for
Pin-Constrained Digital Microfluidic Biochips,” IEEE TCAD, vol. 30, no. 7, pp. 986–999, 2011.

[20] M. Shayan, S. Bhattacharjee, Y. A. Song, K. Chakrabarty, and R. Karri, “Security Assessment of
Microfluidic Immunoassays,” in Proc. of the COINS, 2019, pp. 217–222.

[21] L. M. Fidalgo and S. J. Maerkl, “A Software-Programmable Microfluidic Device for Automated
Biology,” Lab Chip, vol. 11, pp. 1612–1619, 2011.

[22] T. Tseng, B. Li, M. Li, T. Ho, and U. Schlichtmann, “Reliability-Aware Synthesis With Dynamic
Device Mapping and Fluid Routing for Flow-Based Microfluidic Biochips,” IEEE TCAD, vol. 35,
no. 12, pp. 1981–1994, 2016.

[23] Y. Zhu, B. Li, T.-Y. Ho, Q. Wang, H. Yao, R. Wille, and U. Schlichtmann, “Multi-channel and
Fault-tolerant Control Multiplexing for Flow-based Microfluidic Biochips,” in Proc. of the ICCAD,
2018, pp. 123:1–123:8.

[24] Y. Su, T.-Y. Ho, and D. Lee, “A Routability-Driven Flow Routing Algorithm for Programmable
Microfluidic Devices,” in Proc. of the ASP-DAC, 2016, pp. 605–610.

[25] G. Lai, C. Lin, and T.-Y. Ho, “Pump-Aware Flow Routing Algorithm for Programmable Microflu-
idic Devices,” in Proc. of the DATE, 2018, pp. 1405–1410.

[26] C. Liu, B. Li, B. B. Bhattacharya, K. Chakrabarty, T.-Y. Ho, and U. Schlichtmann, “Testing Mi-
crofluidic Fully Programmable Valve Arrays (FPVAs),” in Proc. of the DATE, 2017, pp. 91–96.

[27] A. Bernardini, C. Liu, B. Li, and U. Schlichtmann, “Efficient Spanning-tree-based Test Pattern
Generation for Programmable Microfluidic Devices,” Microelectronics Journal, vol. 79, pp. 38–45,
2018.

[28] A. Grimmer, B. Klepic, T.-Y. Ho, and R. Wille, “Sound Valve-Control for Programmable Microflu-
idic Devices,” in Proc. of the ASP-DAC, 2018, pp. 40–45.

44

[29] A. Gupta, J. Huang, S. Yamashita, and S. Roy, “Design Automation for Dilution of a Fluid Us-
ing Programmable Microfluidic Device-Based Biochips,” ACM TODAES, vol. 24, no. 2, pp. 21:1–
21:24, 2019.

[30] L. M. Fidalgo and S. J. Maerkl, “A software-programmable microfluidic device for automated biol-
ogy,” Lab on a Chip, vol. 11, no. 9, pp. 1612–1619, 2011.

[31] T. Fu and Y. Ma, “Bubble formation and breakup dynamics in microfluidic devices: A review,”
Chemical Engineering Science, vol. 135, pp. 343–372, 2015.

[32] S. Saha, D. Kundu, S. Roy, S. Bhattacharjee, K. Chakrabarty, P. P. Chakrabarti, and B. B. Bhat-
tacharya, “Factorization Based Dilution of Biochemical Fluids with Micro-Electrode-Dot-Array
Biochips,” in Proc. of the ASP-DAC, 2019, pp. 462–467.

[33] Shalu, S. Kumar, A. Singla, S. Roy, K. Chakrabarty, P. P. Chakrabarti, and B. B. Bhattacharya,
“Demand-Driven Single- and Multitarget Mixture Preparation using Digital Microfluidic Biochips,”
ACM TODAES, vol. 23, no. 4, pp. 55:1–55:26, 2018.

45

5%
SIMILARITY INDEX

2%
INTERNET SOURCES

4%
PUBLICATIONS

1%
STUDENT PAPERS

1 1%

2 <1%

3 <1%

4 <1%

5 <1%

6 <1%

BTP_Batch2_FInal_Report_tin.pdf
ORIGINALITY REPORT

PRIMARY SOURCES

Fidalgo, Luis M., and Sebastian J. Maerkl. "A
software-programmable microfluidic device for
automated biology", Lab on a Chip, 2011.
Publicat ion

www.math.gatech.edu
Internet Source

Submitted to Indian Institute of Technology,
Bombay
Student Paper

Yang Zhao, Krishnendu Chakrabarty. "Design
and Testing of Digital Microfluidic Biochips",
Springer Nature, 2013
Publicat ion

Zipeng Li, Krishnendu Chakrabarty, Tsung-Yi
Ho, Chen-Yi Lee. "Micro-Electrode-Dot-Array
Digital Microfluidic Biochips", Springer Nature,
2019
Publicat ion

ddfe.curtin.edu.au
Internet Source

